SIEMENS

1(7)SYSTEM DESCRIPTION Respons. dept Date Reg. M DB 101 **GPMA** 2004-02-24 MBU10

This document is issued in Pulse.

we reserve all rights in this occument and in the information contained therein. Reproduction, use or disclosure to third Parties without express authority is strictly forbidden.

© Demag Delaval Industrial Turbomachinery AB

197
MS Word
00-03
0474-B
97 0

LIQUID FUEL DOSAGE SYSTEM	Prepared Markus Perneros	YAMAMA CEMENT
TABLE OF CONT	ENTS	
TABLE OF CONT Purpose of the system General description of the system Function Start up Continuous operation		
Purpose of the system		2
General description of the system		2
Function		4
Start up		4
Continuous operation		4
Turbine stop		4
Stand still		4
Gas turbine trip		4
Gas turbine start abort		4
Generator breaker trip		4
Loss of power supply		4
System faults		4
Other faults		5
Technical specification		5
Design criterias and standards		5
Dimensioning data		5
Engineering data		5
Emergency power supply		5
Installation		5
Materials		5
Component data		5
Testing and service		6
Testing during normal operation		6
Accessibility during normal operation		6
Testing during no operation		6
INDEX OF COMPONENTS		7
		To a
Approved Latest revision 2004-03-02 Henrik Örn –		Archive HG 5255
Checked 2004-03-02 Roger Jonsson		No. 1CS39848
rtogor somosom		1

2(7)

0	
//ord	
v Z	
0-03	3
ב מן	
7	†

A 087

			2 (1)
SYSTEM DESCRIPTION	Respons. dept	Date	Reg.
MBU10	GPMA	2004-02-24	M DB 101
LIQUID FUEL DOSAGE SYSTEM	Prepared		
EIQCID I CEE DOSMOE S ISTEM	Markus Pe	erneros	YAMAMA CEMENT

Purpose of the system

The dosage unit supplies magnesium additive into gas turbine fuels which are contaminated by lead, sodium and vanadium. In order to increase the ash melting point. A temperature above 950°C for GT10B2 will make sure that the ashes passes through hot parts of the gas turbine as dry powder.

The dosage rate of is stated by SIEMENS after analysing the ash sticking point of the fuel. The dosage rate should be 21 ppm(vol) (21 ml/m³).

General description of the system

Please also see P&ID 2046 025

The dosage pump is installed together with the fuel additive tank. The dosage unit is installed on the same skid as the liquid fuel unit. The dosage unit is connected to the pipe upstreams of the minute tank in the liquid fuel unit.

The dosage unit is load controlled. The solenoid valves is controlled by open and close pulses. The length of the pulses varies depending on gas turbine load i.e. liquid fuel flow.

Main components

• Strainer

MBU10AT401

Suction strainer for fill pipe.

Shutoff valve

MBU10AA405

Hand manoeuvred shutoff valve.

Pump

MBU10AP403

Hand driven pump transports dosage media from the barrel when need for refill.

• Fuel additive tank

MBU10BB405

The tank is containing 250 litres of dosage media. The tanks purpose is to decrease handling time and to avoid media from getting in contact with ambient air. The tank is ventilated by a dehydrating breather.

• Dehydrating breather

MBU10AT405

Dehydrates air flowing through when filling and emptying tank.

Approved	Latest revision	Archive	HG
2004-03-02 Henrik Örn	-		5255
Checked 2004-03-02 Roger Jonsson		No. 1CS39848	

			· /
SYSTEM DESCRIPTION	Respons. dept	Date	Reg.
MBU10	GPMA	2004-02-24	M DB 101
LIQUID FUEL DOSAGE SYSTEM	Prepared		
EIQUID FULL DOSAGE STSTEM	Markus Pe	erneros	YAMAMA CEMENT

• Combined shutoff valve and level indicator.

MBU10CF405

The function and dosage rate can be checked by a combined shut off valve and level indicator. The shut off valves MBU10CF405-KA03 and MBU10CF405-KA01 are opened, shut off valves MBU10CF405-KA02 and MBU10AA410 are closed. Read level difference on the indicator markings during 60 sec. The flow rate shall, correctly adjusted be 1,2 cm/60 sec (full turbine load).

• Shutoff valve

MBU10AA415

Hand manoeuvred shutoff valve for drain of Fuel Additive Tank.

• Shutoff valve

MBU10AA410

Hand manoeuvred shutoff valve.

Strainer

MBU10AT410

• Pressure reducing valve

MBU10AA425

The pressure regulator valve reduces the instrument air pressure supplied to dosage pump. Pressure read on gauge shall be set to 2 bar(g). Pressure is adjusted with reduce screw.

Shutoff valve

MBU10AA420

The shutoff valve shuts off instrument air to dosage pump when service is carried out. Valve is located upstreams instrument air inlet on the dosage pump.

• Dosage pump

MBU10AP405

The dosage pump, a piston type of deplacement pump, is driven by instrument air. The pump is started by activating solenoid and the frequency of air impulses is adjusted with a control knob on the controller. The stroke length can be adjusted by a stroke adjuster.

• Safety valve

MBU10AA430

Safety valve pressure side dosage pump.

Shutoff valve

MBU10AA435

The shutoff valve is located near the dosage media outlet. Purpose is to keep dosage media in pipe upstreams valve when service is carried out.

markings during 60 sec. The flow rate shall, correctly adjusted be 1,2 cm/60 sec (full turbine load).

Approved	Latest revision	Archive	HG
2004-03-02 Henrik Örn	-		5255
Checked 2004-03-02 Roger Jonsson		No. 1CS39848	

26
Word 9
Σ
00-03
0474-B
~

		· /
SYSTEM DESCRIPTION	Respons. dept Date	Reg.
	GPMA 2004-02-2	24 M DB 101
MBU10	2001.02.2	1,122 101
LIQUID FUEL DOSAGE SYSTEM	Prepared	
EIQUID I CEE DOSMOE STSTEM	Markus Perneros	YAMAMA CEMENT

Function

A controlled amount of fuel additive is fed from the fuel additive tank to the liquid fuel pipe ahead of the minute tank by a set variable speed dosage pump. The dosage pump is installed in the liquid fuel unit. The dosage rate is checked by the combined shut off valve and level indicator. The dosage rate for turbine protection additive should be 21 ppm(vol) (21 ml/m³). The shut off valves MBU10CF405-KA03 and MBU10CF405-KA01 are opened, shut off valves MBU10CF405-KA02 and MBU10AA410 are closed. Level difference is read on the indicator markings during 60 sec. The dosage pump is containing non return valves.

Start up

The dosage pump MBU10AP405 starts when the turbine is in operation. Additive is supplied to the liquid fuel system.

Continuous operation

During continuous operation the fuel additive is supplied to the liquid fuel system at a constant dosage/flow rate of 21 ppm(vol) (21 ml/m³).

Turbine stop

During gas turbine shut down the dosage pump is stopped and the dosage system is shut down.

Stand still

After shut down the system is not in operation.

Disturbances

Gas turbine trip

Initates dosage system shut down.

Gas turbine start abort

The dosage system is not running until turbine in operation.

Generator breaker trip

Does not affect the system.

Loss of power supply

Initates dosage system shut down.

System faults

Consequenses with main component faults

Approved 2004-03-02 Henrik Örn	Latest revision	Archive	нд 5255
Checked 2004-03-02 Roger Jonsson		No. 1CS39848	

		8 (1)
SYSTEM DESCRIPTION	Respons. dept Date	Reg.
MBU10	GPMA 2004-02-24	M DB 101
LIQUID FUEL DOSAGE SYSTEM	Prepared	
EIQUID FUEL DOSAGE STSTEM	Markus Perneros	YAMAMA CEMENT

Pump AP405: Too much or not enough additive is supplied to the fuel.

Other faults

Fault in connecting systems:

Instrument air system QFA: The dosage system can not operate in case of air failure to dosage

pump AP405

Technical specification

Design criterias and standards

Liquid fuel specifications according to document: GTI J242002E edition K. Liquid fuel additive specifications according to document: GTI J243006E edition 1.

Dimensioning data

Constant dosage rate of 21 ppm(vol) (21 ml/m³).

Engineering data

Design pressure: 5 Bar(e)
Design temperature 100°C

Emergency power supply

The solenoid operates the dosage pump which is powered from the 24 VDC system. The 24 VDC system is powered from the 230 VAC UPS system.

Installation

The dosage pump is installed together with the fuel additive tank which is separated from the liquid fuel unit. The dosage unit is connected to the pipe upstreams of the minute tank in the liquid fuel unit.

Materials

The dosage pump, tank and piping are made of stainless steel.

Component data

Tank volume: 250 l standard. Weight: 350 kg (filled).

Approved 2004-03-02 Henrik Örn	Latest revision -	Archive	нд 5255
Checked 2004-03-02 Roger Jonsson		No. 1CS39848	

SIEMENS

6 (7)

SYSTEM DESCRIPTION MBU10	Respons. dept Date GPMA 2004-02-24	M DB 101
LIQUID FUEL DOSAGE SYSTEM	Prepared Markus Perneros	YAMAMA CEMENT

This document is issued in Pulse.

Testing and service

Testing during normal operation

No function test during normal operation.

Accessibility during normal operation

No objects in the system are available for maintenance during normal operation.

Testing during no operation

No function test during operation.

we reserve ail rights in this occument and in the information contained therein. Reproduction, use or disclosure to third Parties without express authority is strictly forbidden.

A 087 0474-B 00-03 MS Word 97

Approved 2004-03-02 Henrik Orn	Latest revision	Archive	HG 5255
Checked 2004-03-02 Roger Jonsson		No. 1CS39848	

SIEMENS

7(7)

SYSTEM DESCRIPTION	Res
MBU10	GF
LIQUID FUEL DOSAGE SYSTEM	Prep
EIQUE TUEE DUSTICE STOTEM	M

Respons. dept	Date	Reg.
GPMA	2004-02-24	M DB 101
Prepared		
Markus Pe	rneros	YAMAMA CEMENT

INDEX OF COMPONENTS

M	
MBU10 AA405	
Shutoff valve	2
MBU10 AA410	
Shutoff valve	3
MBU10 AA415	
Shutoff valve	3
MBU10 AA420	
Shutoff valve	3
MBU10 AA425	
Pressure reducing valve	3
MBU10 AA430	
Safety valve	3
MBU10 AA435	

Shutoff valve	3
MBU10 AP403	
Pump	2
MBU10 AP405	
Dosage Pump	3
MBU10 AT401	
Strainer	2
MBU10 AT405	
Dehydrating breather	2
MBU10 AT410	
Strainer	3
MBU10 BB405	
Additive tank	2
MBU10 CF405	
Level indicator	3

This document is issued in Pulse.

Approved 2004-03-02 Henrik Örn	Latest revision	Archive	нд 5255
Checked 2004-03-02 Roger Jonsson		No. 1CS39848	3