	Sheet	
SIEMENS	1 (13)	
SYSTEM DESCRIPTION	Respons. deptDateReg.GPMA2004-02-25M DB 101	
MBN LIQUID FUEL SYSTEM	Prepared	
	Markus Perneros YAMAMA CEMEN	T
TABLE OF C	NTENTS	
Purpose of the system	2	
General description of the system	2	
Main components	3	
Function	9	
Start up	9	
Continuous operation	9	
Turbine stop	10	
Stand still	10	
Disturbances	10	
Gas turbine trip	10	
Generator breaker trip	10	
Loss of power supply	10	
System faults	10	
Other faults	11	
Technical specification	11	
Design criteria and standard	11	
Dimensioning data	11	
Engineering data	11	
Emergency power supply	11	
Installation	11	
Materials	11	
Component data	12	
Testing and service	12	
Testing during normal operation	12	
Accessibility during normal operation	12	

Checked 2004-03-18 Roger Jonsson		[№] . 1CS39864	
Approved 2004-03-18 Fredrik Andersson	Latest revision a. Markus Perneros, GPMA, 040607	Archive	нд 5215

we reserve all rights in this occurnent and in the information contained therein. Reproduction, use or disclosure to third Parties without express authority is strictly forbidden. © Demag Delaval Industrial Turbomachinery AB

					Sheet
SIEMENS					2 (13)
	SYSTEM DESCRIPTION MBN	Respons. dept	Date 2004-02-25	Reg. M DB 101	
	LIQUID FUEL SYSTEM	Prepared Markus Pe	erneros	YAMAMA	CEMENT

Purpose of the system

The purpose of the internal liquid fuel system is to supply fuel of correct quantity and pressure to the gas turbine burners.

That is:

- To supply the gas turbine with liquid fuel.
- To control the fuel flow at start-up and during operation and at normal stop.
- Activate a fast shut-off of the fuel supply in case of a turbine trip in order to prevent damage to the machinery.
- To control the fuel supply at change over from liquid fuel to gas and vice versa.
- Drain surplus liquid fuel in the system and equipment for possibility to clean-blow the nozzles at shut down and at normal stop.
- To purge oil burners during gas operation.
- To purge some of the liquid fuel burners at low load of liquid fuel operation.
- Drain any liquid fuel in the system after shut down.

General description of the system

Also see P&ID 2046 025

The liquid fuel unit is located on a skid outside the gas turbine enclosure.

Fuel from the external fuel system is supplied via a filter to the liquid fuel tank. A float valve controls fuel level in the tank. The high pressure pump (internal gear type) with variable speed control the fuel through the shut-off valves to the fuel nozzles. The fuel injection thus is controlled through the pump and frequency converter.

The purge air system is used for purging the liquid fuel burners with gas fuel during operation on gas fuel and purging some of the liquid fuel burners with compressor air at low load of liquid fuel operation. The system is also used for clean-blowing the liquid fuel burners with instrument air after shut down of the gas turbine after liquid fuel operation.

The purging and clean-blowing will prevent the liquid fuel nozzles from carbonisation (coking).

The media is diesel oil or other type of fuels which fulfil liquid fuel specification GTI E242002 E.

Most fuel system components are located on the fuel unit.

A 087 0474-B 00-03 MS Word 97

Approved 1004-03-18 redrik Andersson	Latest revision a. Markus Perneros, GPMA, 040607	Archive	нд 5215
Checked 004-03-18 Roger Jonsson		^{No.} 1CS39864	

SIEMENS				Sheet 3 (13)
SYSTEM DESCRIPTION MBN	Respons. dept Date GPMA 200		Reg. M DB 101	
LIQUID FUEL SYSTEM	Prepared Markus Pernero	os	YAMAMA	CEMENT

Main components

• Fuel isolation valve (spring closing type) MBN10AA005

The valve is located upstreams of liquid fuel unit. Purpose of valve is to isolate liquid fuel unit in case of fire, high level in liquid fuel tank or other reasons for isolating the liquid fuel unit. The valve is of spring closing type, if the open order or instrument air for any reason disappears, the valve returns to its safe closed position. The valve can only be operated automatically. Limit switches are indicating valve position.

• Filter (particle filter, duplex type) MBN10AT005

The filter is a duplex filter with 2 x 100% capacity with a continuous flow transfer valve and the filter purifies the fuel to the required level in order to avoid damage into the gas turbine burners. The filter cartridges are particle separating and are made of inorganic fibres bonded with resin. A differential pressure transmitter over the filter gives an alarm when maintenance is needed. The change-over between filters is made manually. Change of filter elements can be made during operation. The filter unit is also provided with an equalisation valve and this valve is used prior to change-over between filters, to enable filling of the standby filter in order to avoid a pressure drop in the system.

- Drainage shut off valves, fuel filter MBN10AA220 MBN10AA225 The shut off valves are used to drain the filter houses clean side during maintenance. The valves are in closed position during normal system operation.
- Ventilation shut off valves, fuel filter MBN10AA235 MBN10AA240 The shut off valves are used to vent the filter houses to avoid air pockets. The valves are in closed position during normal system operation.
- Differential pressure transmitter, fuel filter MBN10CP005

The transmitter is monitoring the differential pressure across the fuel filter, indicating need for filter change-over and maintenance.

At high (H1) differential pressure, an alarm is initiated.

The operator has to manoeuvre the change over valve and change the dirty filter element. It is recommended to change of the dirty filter element directly or soon after filter change-over.

• Flow meter MBN10CF005

Approved	Latest revision	Archive	HG
2004-03-18 Fredrik Andersson	a. Markus Perneros, GPMA, 040607		5215
Checked 2004-03-18 Roger Jonsson		^{No.} 1CS39864	

SIEMENS			Sheet 4 (13)
SYSTEM DESCRIPTION MBN		Date 2004-02-25	Reg. M DB 101
LIQUID FUEL SYSTEM	Prepared Markus Per	meros	YAMAMA CEMENT

The measuring principle of the screw-volumeter is positive-displacement. The measuring chambers are formed by two cycloidal spindels rotating in a casing. The fluid to be measured flows in axially and causes the spindles to rotate. The flow rate is a function of the defined volume of the measuring chambers.

• Level control valve (float type) MBN10AA010

The valve is a float valve, and is used to maintain level in the fuel tank BB005. The float body is fixed at the lever. The float can be adjusted in horizontal direction at the lever arm. There is also the possibility to achieve a higher or lower regulation of the fluid level, by means of adjusting the lever arm at the mounting bolt.

• Fuel tank

MBN10BB005

The liquid fuel tank, with its float valve controlled level, serves as a reservoir for the high pressure fuel pump. Fuel from clean blowing sequence, circulation during start up, drain from pump and safety valve returns in the tank.

The tank has a volume which correspond with operation times on GT in the range from 3 minutes up to 15 minutes depending on GT load. The volume is enough for transition over from gas to distillate and distillate to gas.

• Level switch

MBN10CL005

Fuel level in the tank is monitored by a level switch that gives alarm at high or low level. High level (H1) will cause closing of the fuel isolation valve to prevent overfilling of the tank in case of float valve failure. The fuel isolation valve opens 5 seconds after high level (H1) switch is released.

Low level (L1) and low level (L2) initiates alarm.

Low level (L1) in the tank will initiate fuel change over to gas operation.

Low level (L1) in the tank interlocks the tank heater.

Low level (L2) prevents fuel change over from gas to liquid fuel.

Low level (L2) initiates unloaded shutdown (30 sec). Pump is not allowed to run dry because of hazardous media.

• Temperature transmitter, fuel tank

MBN10CT005

The Pt100, installed in the tank, is continuously monitoring the fuel temperature in the tank. The transmitter is used for correction of fuel amount (to correct for density) and pump curves (to correct for internal leakage in the pump). The Pt100 element is also used to supervise the tank temperature i.e. heater MBN10AH005.

• Fuel heater, electrical MBN10AH005-R01

The heater is installed in the liquid fuel tank cover. For applications with high viscosity fuels, the electrical heater keeps the fuel in the tank at optimum viscosity for the burners at start up. $+5^{\circ}$ C is the lowest allowed temperature for the liquid fuel.

Approved 2004-03-18 Fredrik Andersson	Latest revision a. Markus Perneros, GPMA, 040607	Archive	нд 5215
Checked 2004-03-18 Roger Jonsson		^{№.} 1CS39864	

SI	EMENS					Sheet
	YSTEM DESCRIPTIO	N	Respons. dept	Date	Reg.	5 (13)
	BN	JIN	GPMA	2004-02-25	M DB 10	1
LI	QUID FUEL SYSTEM	Μ	Prepared Markus Pe	erneros	YAMAM	IA CEMENT
	The fuel heater is con	trolled internally by a the	ermostat.			
•	High temperature aut	n switch ed in the heater MBN10A omatically disconnects th as to be manually reset a	e power in o		overheating	g of the heater
•	Tank ventilation filter MBN10AT015 The filter prevents pa	rticles from surrounding	air from ente	ring the tank du	uring ventila	ation
•	MBN10AA030 up to	ided round the pipes from and including the manifo l tank drain (manually op	old. The aim i			
•	Strainer MBN10AT010	n the lowest point of the line in the entry of the suction of the nozzles.				
•	and frequency conver and motor connected. required amount of fu- turbine governor. The back up for the shut-o A thermistor in the m thermistor breaks ope occur when operating The motor has a built	l pump is a displacement ter (SFC). The pump is in The pump can only be o el to the burners using the pump will decrease the	nstalled horiz perated in au e frequency of fuel flow quid d to the SFC. nd the pump at low speed. ting element	ontally beside to tomatic mode. ' converter which ckly at turbine to At high windir will stop. High	the tank with The pump go is controll trip, thus se and temperate winding te	th coupling gives the ed by the rving as a ure, the mperature can
•		function for the system. T of 60 bar. The valve is loo		*	in the syste	em and starts
-redi	-03-18 rik Andersson	Latest revision a. Markus Perneros, GPM	A, 040607		Archive	нд 5215
Chec	ked -03-18				No. 1CS3986	

This document is issued in Pulse.

we reserve all rights in this occument and in the information contained therein. Reproduction, use or disclosure to third Parties without express authority is strictly forbidden. © Demag Delaval Industrial Turbomachinery AB

				Sheet
SIEMENS				6 (13)
SYSTEM DESCRIPTION MBN	Respons. dept	Date 2004-02-25	Reg. M DB 101	
LIQUID FUEL SYSTEM	Prepared Markus Pe	erneros	YAMAMA	CEMENT
	•			

Fuel test valve MBN10AA405

The fuel test valve is used when taking fuel samples.

• Liquid fuel shut-off valve (spring closing type) MBN10AA025

The fuel shut-off valve is used to shut off the fuel supply when stopping the turbine by using a pneumatic quick closing actuator. The valve is of spring closing type. If the open order or instrument air for any reason disappears it will return to its safe closed position. Limit switches are indicating valve position. When indicating not fully closed valve before start, an alarm is given and the start is interlocked. The valve can be operated only in automatic mode.

- Pressure measuring point MBN10CP020 Pressure point upstream second liquid fuel shut off valve.
- Liquid fuel shut-off valve 2 (spring closing type) MBN10AA030 The fuel shut off valve is used to shut off the fuel supply when stopping the turbine by using a pneumatic quick closing actuator. The valve is of spring closing type. If the open order or instrument air for any reason disappears it will return to its safe closed position. Limit switches are indicating valve position. When indicating not fully closed valve before start, an alarm is given and the start is interlocked. The valve can only be operated in automatic mode
- Drain valve (manually operated) MBN10AA406 The fuel drain valve is used when system is drained for service.
- Drain valve (manually operated) MBN10AA407 The fuel drain valve is used when system is drained for service.
- Delta pressure transmitter MBN10CP035

The transmitter is monitoring the differential pressure down stream second shut off valve before manifold and compressor discharge pressure. Used during start up. Used during change of fuel to oil to indicate burning on oil.

• Liquid fuel drain valve (spring open type) MBN10AA040

The liquid fuel drain valve is used when flushing the liquid fuel system during start up and during clean-blowing sequence by using a pneumatic actuator. The valve is of spring opening type. If the open order or instrument air for any reason disappears it will return to its safe open position. The valve can only be operated in automatic mode.

Approved 2004-03-18 Fredrik Andersson	Latest revision a. Markus Perneros, GPMA, 040607	Archive	нд 5215
Checked 2004-03-18 Roger Jonsson		^{No.} 1CS39864	

we reserve ail rights in this document and in the information contained therein. Reproduction, use or disclosure to third Parties without express authority is strictly forbidden. © Demag Delaval Industrial Turbomachinery AB

		Sheet
SIEMENS		7 (13)
SYSTEM DESCRIPTION MBN	Respons. dept Date GPMA 2004-02-25	Reg. M DB 101
LIQUID FUEL SYSTEM	Prepared Markus Perneros	YAMAMA CEMENT
Cleaning air valve 1 MBN30AA005 The cleaning air valve supplies instrume	ent air for clean blowing of the fu	el system during the clean

The cleaning air valve supplies instrument air for clean blowing of the fuel system during the clean blowing sequence. The valve prevents liquid fuel and gas to enter instrument air system during operation. The valve can only be operated automatically.

 Pressure between cleaning air valves 1 and 2. MBN30CP005
Pressure between cleaning air valves is supervised by a pressure transmitter. High pressure indicates possible gas or/and fuel leakage through cleaning air valve MBN30AA010. High pressure H1 will

initiate alarm.

• Cleaning air valve 2

MBN30AA010

The cleaning air valve supplies instrument air for clean blowing of the fuel system during the clean blowing sequence. The valve prevents liquid fuel and gas fuel to enter instrument air system during operation. The valve can only be operated automatically.

• Purge gas valve

MBN30AA015

The purge gas valve is only open during operation on main gas fuel, to purge and cool the liquid fuel burners with small amount of gas. Prevents leakage of liquid fuel into gas system. The valve can only be operated automatically.

• Purge gas valve

MBN30AA030

The purge gas valve is only open during operation on main gas fuel, to purge and cool the liquid fuel burners with small amount of gas. The valve opens one minute before valve MBN30AA015 to avoid to fast injection of liquid fuel from fuel manifold and pipe down stream MBN30AA025 (together with MBN30BP005). MBN30AA030 closing at the same time as MBN30AA015. The valve can only be operated automatically.

• Purge gas orifice

MBN30BP005

The purge gas orifice creates a flow restriction to achieve slow injection of liquid fuel when purge gas operation is starting.

• Pressure between purging air valves MBN30CP010

Pressure between purge gas valves is supervised by a pressure transmitter. High pressure indicates possible liquid fuel leakage through valve AA025. High pressure H1 will initiate alarm.

• Purge gas / Cleaning air valve MBN30AA025

The valve is open during operation on gas fuel, to purge and cool the liquid fuel burners with small amount of purge gas and it is open to supply instrument air for clean blowing of the fuel system

Approved 2004-03-18 Fredrik Andersson	Latest revision a. Markus Perneros, GPMA, 040607	Archive	нд 5215
Checked 2004-03-18 Roger Jonsson		^{No.} 1CS39864	

SIEMENS				Sheet 8 (13)
SYSTEM DESCRIPTION MBN		Date 2004-02-25	Reg. M DB 101	
LIQUID FUEL SYSTEM	Prepared Markus Peri	meros	YAMAMA	CEMENT

during the clean blowing sequence, to prevent carbonisation in the fuel nozzles. Prevents leakage of liquid fuel into purge gas system and instrument air system. The valve can only be operated automatically.

• Purge air shut-off valve

MBN30AA035

The purge air shut-off valve is automatically open at low load on diesel fuel at operation below 4 MW to purge and cool the liquid fuel burners with small amount of air from the compressor. Above 4 MW MBN30AA035 will be automatically closed due to closing of MBN40AA035.

MBN30AA035 is automatically opened / closed when opening / closing valve MBN40AA035.

• Burner shut-off valves (stage valves)

MBN40AA005, AA010, AA015, AA020, AA025 and AA030

The shut-off valves located on six of totally eighteen of the liquid fuel burners are used to shut off supply in order to keep up velocity in remaining burners at low turbine load. The valves are of three-way type and connect to liquid fuel manifold, burner and purge air manifold. Unloaded the valve is spring opening to connections liquid fuel manifold to burner. If the open order or instrument air for any reason disappears they will return to safe open position. The valves can only be operated in automatic mode.

 Instrument air shut-off valves MBN40AA035, MBN40AA040 The two instrument air shut-off values

The two instrument air shut-off valves are used to supply air to the actuators to the six burner liquid fuel shut-off valves by using two solenoid valves. The valves can only be operated in automatic mode.

• Instrument air orifice

MBN40BP005

The instrument air orifice creates a flow restriction to achieve slow opening/closing of burner shut off valves.

• Instrument air orifice

MBN40BP010

The instrument air orifice creates a flow restriction to achieve slow opening/closing of burner shut off valves.

Approved 2004-03-18 Fredrik Andersson	Latest revision a. Markus Perneros, GPMA, 040607	Archive	нд 5215
Checked 2004-03-18 Roger Jonsson		^{№.} 1CS39864	

SIEMENS			Sheet 9 (13)
SYSTEM DESCRIPTION MBN	Respons. dept GPMA	Date 2004-02-25	Reg. M DB 101
LIQUID FUEL SYSTEM	Prepared Markus Per	rneros	YAMAMA CEMENT

Function

Operation of the system is fully automatic.

Start up

Leakage test of the instrument air and purge gas fuel shut-off valves is automatically performed during start up.

Before start, the fuel heater has heated the fuel in the tank to start up temperature. At start the isolation valve opens. The level control valve adjusts the level in the liquid fuel tank. The shut-off valve 1 and the drain valve opens. The high-pressure fuel pump starts to flush the system. At the same time gas from the ignition gas system is ignited. The flame detection system checks the ignition of the flame. The second shut-off valve opens and the liquid fuel injects into start up burners and the fuel system is in operation.

Shut-off valve in wrong position, pump speed, or flame detector indicating flame before fuel injection interlocks or aborts start.

Continuous operation

During continuous operation the fuel pump gives the required amount of fuel to the burners using the frequency converter which is controlled by the turbine governor. The safety valve limits the fuel pressure.

Loss of flame initiates turbine trip.

Burner shut-off valves

At low load operation on liquid fuel, below 2 MW, all of the valves are closed for liquid fuel (open for purge air). Between 2 and 4MW three of the valves (MBN40AA005, 015, 025) are open for liquid fuel (closed for purge air) and three of the valves (MBN10AA010, 020, 030) are closed for liquid fuel (open for purge air). Above 4 MW all the valves are open only for liquid fuel (closed for purge air).

Gas fuel running

When operating on gas fuel, a small portion of gas fuel flow downstream the control valve enters the fuel oil nozzles for purging. Change over between fuels can be initiated automatically or manually.

Burner shut-off valves

All valves in closed position (closed for liquid fuel to burner) to ensure purging with gas. In this closed position the valve is open for flow of gas to the burners.

Approved 2004-03-18 Fredrik Andersson	Latest revision a. Markus Perneros, GPMA, 040607	Archive	нд 5215
Checked 2004-03-18 Roger Jonsson		^{No.} 1CS39864	

A 087 0474-B 00-03 MS Word 97

SIEMENS		Sheet 10 (13)
SYSTEM DESCRIPTION MBN	Respons. dept Date GPMA 2004-02-25	Reg. M DB 101
LIQUID FUEL SYSTEM	Prepared Markus Perneros	YAMAMA CEMENT

Main fuel - the fuel that is pre-defined for the gas turbine plant to be the main operating fuel Backup fuel - the fuel that is pre-defined for the gas turbine plant to be the backup fuel Auto control - the fuel that the operator has selected to be the operating fuel Standby control - the fuel that the operator has selected to be the standby fuel

Change-over from main fuel to backup fuel can be initiated automatically or manually. Change-over from backup fuel to main fuel shall be initiated manually.

Turbine stop

During turbine stop the load of the power turbine is ramped down. When the load has reached a pre-set minimum value, the fuel shut of valves are ordered to close and the pump is stopped.

During the shut down sequence the second shut off valve (AA030) and the liquid fuel drain valve (AA040) are open for a short period to drain surplus fuel from liquid fuel piping back to the tank by means of combustion chamber pressure.

After closing the fuel shut off valves a second time, the cleaning air shut off valves open and the manifold and nozzles are purged by blowing instrument air through the system to prevent carbonisation in the fuel nozzles.

Stand still

After shut down the system is not in operation. The liquid fuel FG is off. The shut off valves, the drain valve, the clean-blowing valves and the isolation valve are closed. The fuel pump is stopped.

Disturbances

Gas turbine trip

The fuel shut off valves are ordered to close and the pump is stopped.

Generator breaker trip

The pump control will react to sustain zero load.

Loss of power supply

Loss of AC power supply stops the fuel pump, causing a loss of flame and a gas turbine shut-down.

System faults

The faults which are supervised by alarms and/or shutdown procedures are listed in the alarm and trip document.

Approved 2004-03-18 Fredrik Andersson	Latest revision a. Markus Perneros, GPMA, 040607	Archive	нд 5215
Checked 2004-03-18 Roger Jonsson		^{№.} 1CS39864	

SIEMENS			Sheet
SYSTEM DESCRIPTION	Respons. dept	Date	11 (13) Reg.
MBN	GPMA	2004-02-25	M DB 101
LIQUID FUEL SYSTEM	Prepared Markus Pe	rneros	YAMAMA CEMENT
Other faults			
Fault in connecting systems:			
- External fuel system External fuel system faults may level in tank will cause alarm an			e liquid fuel tank. Low
- Fuel additive dosage system To much additive in the fuel ma additive may result in high temp	•	-	None or too little
- Instrument air system Lost or reduced instrument air p Reduced instrument air pressure Isolation valve Drain valve Quick shut off valves Purge gas and clean air valves Clean blowing sequence.	-	ing of followin = closed positio = closed positio = closed positio	g objects. n) n) n)
Technical specification			
Design criteria and standard			
Liquid fuel specification according	to GTI E242002 E		
Dimensioning data			
Fuel flow required 140 l/min			
Engineering data			
Design pressure:100 Bar(e)Design temperature:90 °C			
Emergency power supply			
The solenoids operating the shut off	valves are powered from 2	24 V DC batter	y back up system.
Installation			
The liquid fuel unit is installed outsi	ide the gas turbine enclosur	re.	
Materials			

Fuel tank and piping after duplex filter is made of stainless steel. Filter casing is made of carbon steel.

we reserve all rights in this occument and in the information contained therein. Reproduction, use or disclosure to third Parties without express authority is strictly forbidden. © Demag Delaval Industrial Turbomachinery AB

SIEMENS				Sneet 12 (13)
SYSTEM DESCRIPTION MBN	Respons. dept	Date 2004-02-25	^{Reg.} M DB 101	
LIQUID FUEL SYSTEM	Prepared Markus Pe	erneros	YAMAMA	CEMENT

Component data

See the system lists

Testing and service

Testing during normal operation

No function test is possible during normal operation.

Accessibility during normal operation

Filter in liquid fuel system is of duplex type 2 x 100% . Contaminated filter element can be changed during normal operation.

Parts of the system are available for maintenance during operation on gas fuel. Further details may be found in the maintenance manual.

တ
Word
MS
00-03
0474-B
087
∢

Approved	Latest revision	Archive	HG
2004-03-18 Fredrik Andersson	a. Markus Perneros, GPMA, 040607		5215
Checked 2004-03-18 Roger Jonsson		^{No.} 1CS39864	

SIEMENS

MBN10 AA005

MBN10 AA010

MBN10 AA025

MBN10 AA030

MBN10 AA040

MBN10 AA205

MBN10 AA215 Safety valve

Fuel isolation valve

Level control valve

Liquid fuel drain valve

Shut off valve, fuel oil tank drain

SYSTEM DESCRIPTION MBN LIQUID FUEL SYSTEM

Μ

Liquid fuel shut-off valve (spring closing type)

Liquid fuel shut-off valve 2 (spring closing type)

This document is issued in Pulse.

we reserve all rights in this occument and in the information contained therein. Reproduction, use or disclosure to third Parties without express authority is strictly forbidden. © Demag Delaval Industrial Turbomachinery AB

Safety valve	5	Cleaning air valve 1
MBN10 AA220		MBN30 AA010
Drainage shut off valve	3	Cleaning air valve 2
MBN10 AA225		MBN30 AA015
Drainage shut off valve	3	Purge gas valve
MBN10 AA235		MBN30 AA025
Ventilation shut off valve	3	Purge gas / Cleaning air valve
MBN10 AA240		MBN30 AA030
Ventilation shut off valve	3	Purge gas valve
MBN10 AA405		MBN30 AA035
Fuel test valve	6	Purge air shut-off valve
MBN10 AA406		MBN30 BP005
Drain valve	6	Purge gas orifice
MBN10 AA407		MBN30 CP005
Drain valve	6	Pressure between cleaning air valves 1 and 2
MBN10 AH005-K01		MBN30 CP010
Overheating protection switch	5	Pressure between purging air valves
MBN10 AH005-R01		MBN40 AA005, AA010, AA015, AA020, AA025
Fuel heater	4	Burner shut-off valves
MBN10 AH010		MBN40 AA035, AA040
Electrical heat tracing	5	Pressure between purging air valves
MBN10 AP005	-	MBN40 BP005
Fuel pump	5	Instrument air orifice
MBN10 AT005	c c	MBN40 BP010
Particle filter	3	Instrument air orifice
MBN10 AT010	5	instrument all office
Strainer	5	
Stranet	5	

3

4

6

6

6

5

5

		13	3 (13)
Respons. dept	Date	Reg.	
GPMA	2004-02-25	M DB 101	
Prepared			
Markus Perneros		YAMAMA CE	EMENT

MBN10 AT015	
Tank ventilation filter	5
MBN10 BB005	5
Fuel tank	4
MBN10 CF005	4
Flow meter	3
MBN10 CL005	5
Level switch	4
MBN10 CP005	-
Differential pressure transmitter	3
MBN10 CP020	U
Pressure measuring point	6
MBN10 CP035	0
Pressure transmitter	6
MBN10 CT005	5
Temperature transmitter (fuel tank)	4
MBN30 AA005	
Cleaning air valve 1	7
MBN30 AA010	
Cleaning air valve 2	7
MBN30 AA015	
Purge gas valve	7
MBN30 AA025	
Purge gas / Cleaning air valve	7
MBN30 AA030	
Purge gas valve	7
MBN30 AA035	
Purge air shut-off valve	8
MBN30 BP005	
Purge gas orifice	7
MBN30 CP005	
Pressure between cleaning air valves 1 and 2	7
MBN30 CP010	
Pressure between purging air valves	7
MBN40 AA005, AA010, AA015, AA020, AA025 and A	A030
Burner shut-off valves	8
MBN40 AA035, AA040	
Pressure between purging air valves	8
MBN40 BP005	
Instrument air orifice	8
MBN40 BP010	
Instrument air orifice	8

Latest revision HG Approved Archive 2004-03-18 Fredrik Andersson a. Markus Perneros, GPMA, 040607 5215 Checked 2004-03-18 Roger Jonsson No. 1CS39864

13 (13)