ABD Electronic timers CT-ranges

Content

Benefits and advantages of the CT-ranges 2
Selection and ordering details
CT-S range 4
CT-E range 6
CT-D range 8
C56xx range 9
Accessories C56xx range 9
Function diagrams
CT-S range 10
CT-E range 12
CT-D range 14
C56xx range 15
Technical data, standards, load limit curves
CT-S range 16
CT-E range 18
CT-D range 20
C56xx range 22
Wiring diagrams, position of terminals, dimensional drawings
CT-S range 23
CT-E range 24
CT-D range 24
C56xx range 26
Accessories CT-S range 27
Conversion table C56xx \rightarrow CT-S/CT-E 28

Electronic timers CT-S, CT-E range

Benefits and advantages

Electronic timers CT-S range

(1) Display of operational status by 2 or 3 LEDs
R2 - output relay 2 energized = red LED
R1- output relay 1energized = red LED
U- supply voltage
= green LED
U/T-supply voltage = green LED flashing while timing
(2) Slide switch to set the $2 \mathrm{nd} \mathrm{c} / \mathrm{o}$ contact as an instantaneous contact.
(3) Rotary switch to preselect the desired function.
(4) Potentiometer with direct reading scale to set the desired time delay.
(5) 10 selectable time ranges from $1 \mathrm{~s}-300 \mathrm{~h}$

Characteristics of CT-S range
■ 3 multifunction and 21 multi-range timers
\square Continuous supply voltage range (24-240VAC/DC) or multisupply voltage ranges (12-40VAC/12-60V/DC; $24 \mathrm{~V}, 42-48 \mathrm{VAC} / \mathrm{DC}$; 110-240VAC; 380-440VAC)

- 1 or $2 \mathrm{c} / \mathrm{o}$ contacts ($250 \mathrm{~V} / 4 \mathrm{~A}$)

■ 2nd c/o contact can be selected as instantaneous contact (front-face selection switch)

- Timing function is initiated via external, voltage free control contacts or via supply voltage
- Remote potentiometer connection feature

■ Time stop function is possible via external control contact

- In compliance with international standards and approvals

Volt free (dry) control contacts

The controlling of the CT-S range timers is done by volt free (dry) control contacts via cable length up to 50 m without interferences.

Time range preselection and fine adjustment
Multicolor scales allow the direct selection of the time range, scaled for the adjustment potentiometer.

Display of operational states
All actual operational states are displayed by front-face LEDs, thus simplifying installation.

Double-chamber cage connecting terminals Double-chamber cage connecting terminals provide connection of up to two wires to $2 \times 2.5 \mathrm{~mm}^{2}$ ($2 \times 14 \mathrm{AWG}$), solid or stranded, with or without wire end ferrules.
Potential distribution does not require additional terminations, thus saving time and money. Wiring is considerably simplified through integrated
 cable guides.

Connection of remote potentiometers
The CT-S range allows fine adjustment of the time ranges via an external potentiometer. The internal potentiometer switches off automatically when an external one is connected.

Integrated markers
Integrated markers allow the product to be marked quickly and simply. No additional marking labels are required.

© Sealable transparent covers

Protection against unauthorized change of time values (available as an accessory).

Electronic timers CT-E range

Combination screws
To actuate the connecting combination screws, only one tool is needed.
(1) Display of operational status by 2 LEDs
U - supply voltage
= LED green

R - output relay energized = LED red
(2) 8 selectable time ranges from 0.05s-100h
(3) Potentiometer with direct reading scale to set the desired time value.
(4) Rotary switch to preselect the desired function.
(5) Potentiometer to adjust the desired time value.

Direct reading scales
Direct setting of the delay time without any additional calculation provides fast positive adjustment.

Characteristics of CT-E range

- 12 single function timers and 2 multifunction timers (24-240VAC/DC)
- Single or dual supply voltage ranges 24VAC/DC, 110-130VAC, 220-240VAC
- Output contacts - 1c/o contact ($250 \mathrm{~V} / 4 \mathrm{~A}$) or solid-state output for high switching frequencies (thyristor 0.8A)
■ Time ranges $0.1 \ldots . .10 \mathrm{~s}, 0.3 \ldots 30 \mathrm{~s}, 3 \ldots 300 \mathrm{~s}, 0.3 \ldots 30 \mathrm{~min}$
- In compliance with international standards and approvals

Electronic timers CT-D range

Benefits and advantages

Electronic timers CT-D range (17.5 mm)

Characteristics of CT-D range

- 1 multifunction and 5 single function timers

■ Multisupply voltage range A1-A2, 24-240VAC/24-48VDC

- 1c/o contact ($250 \mathrm{~V} / 8 \mathrm{~A}$)

■ 7 time ranges $0.05-100 \mathrm{~h}$
■ Parallel load to the control contact possible
\square - UL us - Approval (under preparation)
(1) 7 selectable time ranges from $0.05 \mathrm{~s}-100 \mathrm{~h}$
(2) Potentiometer with direct reading scale to set the desired time delay.
(3) Rotary switch to preselect the desired function.
(4) Display of operational status by 2 LEDs U - supply voltage = green LED flashing while timing R - output relay energized = red LED

Electronic timers CT-56xx range (panel mounted)

Characteristics of C56xx range

$\square 2$ multifunction and 1 single function timer
$\square 6$ analog ($0.1 \mathrm{~s}-10 \mathrm{~h})$ or 11 ($0.1 \mathrm{~s}-9999 \mathrm{~h})$ digital time ranges
■ Front panel mounted $46 \times 48 \mathrm{~mm}$ (hole $45 \times 45 \mathrm{~mm}$)

- Supply voltages 110VAC/24VDC or 220-240VAC/24VDC
- 1c/o or 2c/o with selectable instantaneous contact

■ Display of operational states with 2 LEDs

- Multi-voltage supply

All standard control voltages 24-240VAC / 24-48VDC are connected to the terminals A1-A2.

- Connection terminals

Wide terminal spacing allows connection of $2 \times 1.5 \mathrm{~mm}^{2}$ ($2 \times 16 \mathrm{AWG}$) with or $2 \times 2.5 \mathrm{~mm}^{2}$ ($2 \times 14 \mathrm{AWG}$) sized wires without ferrules.

- Shaping

The width of only 17.5 mm saves space in the control panel.

- Direct reading scales

Direct adjustment of the delay time speeds up installation.

- Display of operational states

The front face LEDs display supply voltage and relay status.
The green supply voltage LED flashes while timing.

- Manual setting tool

As an accessory, a manual setting tool is available.

Electronic timers CT-S range

Selection and ordering details

Characteristics CT-S range

- 3 multifunction and 21 multi-range timers
- Continuous supply voltage range ($24-240 \mathrm{VAC} / \mathrm{DC}$) or multisupply voltage ranges (12-40VAC/12-60V/DC; 24V, 42-48VAC/DC; 110-240VAC; 380-440VAC)
- 1 or $2 \mathrm{c} / \mathrm{o}$ contacts ($250 \mathrm{~V} / 4 \mathrm{~A}$)

■ 2nd c/o contact can be set as instantaneous contact (front-face selection switch)
■ Timing function is initiated via external, voltage free (dry) control contacts or via supply voltage

- Remote potentiometer connection feature
- Time stop function is possible via external control contact

■ In compliance with international standards and approvals

Supply voltage				Order code	Price 1 piece

CT-MFS, multifunction timer, 8 functions ${ }^{11}$, 10 time ranges ($0.05 \mathrm{~s}-300 \mathrm{~h}$), 2c/0²), 3 LEDs

24-240VAC/DC	-	-	-	1SVR 430010 R 0200	
CT-MBS, multifunction timer, 8 functions ${ }^{1)}$, 10 time ranges ($0.05 \mathrm{~s}-300 \mathrm{~h}$), 2c/o²), 3 LEDs					
12-40VAC, 12-60VDC	-		-	1SVR 430010 R 1200	
24VAC/DC, 110-240VAC				1SVR 430012 R 0200	
380-440VAC				1SVR 430011 R 2200	

CT-MBS, multifunction timer, 6 functions ${ }^{1)}$, 10 time ranges ($0.05 \mathrm{~s}-300 \mathrm{~h}$), $1 \mathrm{c} / \mathrm{o}$, 2 LEDs

CT-MBS (1We)

4

Electronic timers CT-S range

Selection and ordering details

Supply voltage				Order code	Price 1 piece
\triangle CT-EAS, ON- and OFF-delay timer, symmetrical times, 10 time ranges (0.05s-300h), 1c/o, 2 LEDs					
24V, 42-48VAC/DC, 110-240VAC	-	-	-	1SVR 430173 R 0100	
\boxtimes CT-EAS, ON- and OFF-delay timer, symmetrical times, 10 time ranges ($0.05 \mathrm{~s}-300 \mathrm{~h}$), 2c/o²), 3 LEDs					
24V, 42-48VAC/DC, 110-240VAC	-			1SVR 430173 R 0200	
\triangle CT-EVS, ON- and OFF-delay timer, asymmetrical times ${ }^{1 \text {) }}$, 2×10 time ranges ($0.05 \mathrm{~s}-300 \mathrm{~h}$), $1 \mathrm{c} / \mathrm{o}, 2$ LEDs					
24V, 42-48VAC/DC, 110-240VAC	- -	-	- \|	1SVR 430193 R 0100	
$1 \Omega \boxtimes$ CT-VWS, impulse-on, 10 time ranges (0.05s-300h), 1c/o, 2 LEDs					
24VAC/DC, 110-240VAC				1SVR 430132 R 0100	
$1 \Omega \boxtimes$ CT-VWS, impulse-on, 10 time ranges (0.05s-300h), 2c/o²), 3 LEDs					
24V, 42-48VAC/DC, 110-240VAC			- \|	1SVR 430133 R 0200	
$1 \Omega \square C T-A W S$, impulse-off, 10 time ranges (0.05s-300h), 1c/o, 2 LED.s					
$24 \mathrm{~V}, 42-48 \mathrm{VAC} / \mathrm{DC}, 110-240 \mathrm{VAC}$	-	-	-	1SVR 430143 R 0100	
1Ω CT-AWS, impulse-on, 10 time ranges (0.05s-300h), 2c/0 ${ }^{2}$, 3 LEDs					
24V, 42-48VAC/DC, 110-240VAC	-			1SVR 430143 R 0200	
$\Omega \rrbracket \mathrm{CT}-E B S$, flasher, starting with "OFF", symmetrical ON/OFF intervals, 10 time ranges ($0.05 \mathrm{~s}-300 \mathrm{~h}$), 1c/o, 2 LEDs					
24VAC/DC, 110-240VAC				1SVR 430152 R 0100	
$\Omega \llbracket C T-E B S$, flasher, starting with "OFF", symmetrical ON/OFF intervals, 10 time ranges ($0.05 \mathrm{~s}-300 \mathrm{~h}$), 2c/0 ${ }^{2}$), 3 LEDs					
24V, 42-48VAC/DC, 110-240VAC			-	1SVR 430153 R 0200	
$\Omega \boxtimes$ CT-TGS, pulse generator ${ }^{3}$, 10 time ranges (0.05 s -300h), 1c/o, 2 LEDs					
24V, 42-48VAC/DC, 110-240VAC	-	-	- \|	1SVR 430163 R 0100	
$\Omega \boxtimes$ CT-PGS, single pulse generator ${ }^{3}$), 10 time ranges (0.05s-300h), 1c/o, 2 LEDs					
24V, 42-48VAC/DC, 110-240VAC	-	-	- \|	1SVR 430253 R 0100	
$\triangle \boxtimes C T-Y D A V$, Star delta timer, twice ON-delayed, 10 time ranges ($0.05 \mathrm{~s}-300 \mathrm{~h}$), c/o time 50 ms , 2c/o, 3 LEDs					
24V, 42-48VAC/DC, 110-240VAC				1SVR 430203 R 0200	
380-440VAC				1SVR 430201 R 2300	
$\Delta 1 \Omega$ CT-YDEW, Star delta timer 10 time ranges ($0.05 \mathrm{~s}-300 \mathrm{~h}$), c/o time 50 ms , $1 \mathrm{n} / \mathrm{o}$ delayed, $1 \mathrm{n} / \mathrm{o}$ non-delayed, 3 LEDs					
$24 \mathrm{~V}, 42-48 \mathrm{VAC} / \mathrm{DC}, 110-240 \mathrm{VAC}$				1SVR 430213 R 0200	
C566, OFF-delay for DC coils, delay time depending on coil					
200-240VDC				1SAR 380000 R 0008	
100-127VDC				1SAR 380000 R 0007	
\square CT-IRS, switching relay, 1c/o, 2 LEDs					
24VAC/DC				1SVR 430220 R 9100	
42-48VAC/DC				1SVR 430220 R 8100	
110-240VAC				1SVR 430221 R 7100	
\square CT-IRS, switching relay, 2c/o, 2 LEDs					
24VAC/DC				1SVR 430220 R 9300	
42-48VAC/DC				1SVR 430220 R 8300	
110-240VAC				1SVR 430221 R 7300	
\square CT-IRS, switching relay, 2c/o, with gold plated contacts, 2 LEDs					
24VAC/DC				1SVR 430230 R 9300	
110-240VAC/DC				1SVR 430231 R 7300	
\square CT-IRS, switching relay, 3c/o, 2 LEDs					
24VAC/DC				1SVR 430220 R 9400	
42-48VAC/DC				1SVR 430220 R 8400	
220-240VAC				1SVR 430221 R 1400	
1) Times for ON- and OFF-delay adjustable independently 3) ON- and OFF-time adjustable independently 2) $2 n d \mathrm{c} / \mathrm{o}$ selectable as instantaneous contact 4) 2 remote potentiometers connectable					
Remark: $1 \mathrm{c} / 0=$ SPDT; $2 \mathrm{c} / 0=$ DPDT			Packing unit 1 piece		
			-Connection diagrams ... 23 - Dimensional drawings .. 24		

Electronic timers CT-E range

Selection and ordering details

CT-ERE

CT-ARE

CT-VWE

6

Electronic timers CT-E range

Selection and ordering details

Supply voltage	Time range	Order code	Price 1 piece
Ω CT-EBE, flasher with symmetrical ON-OFF times, starting with OFF, 1c/o, 2 LEDs			
24VAC/DC, 220-240VAC	0.1-10s	1SVR 550167 R 1100	
110-130VAC		1SVR 550160 R 1100	
\triangle CT-YDE, star-delta timer, 1c/o, 2 LEDs			
24VAC/DC, 220-240VAC	0.1-10s	1SVR 550207 R 1100	
	0.3-30s	1SVR 550207 R 4100	
	3-300s	1SVR 550207 R 2100	
110-130VAC	0.1-10s	1SVR 550200 R 1100	
	0.3-30s	1SVR 550200 R 4100	
	3-300s	1SVR 550200 R 2100	
$\triangle 1 \Omega$ CT-SDE, star-delta timer, 1n/c, 1n/o, 2 LEDs			
24VAC/DC, 220-240VAC	0.3-30s	1SVR 550217 R 4100 1SVR 550210 R 4100	
110-130VAC			
\square CT-IRE, switching relay, A1/A2 diagonal, 1c/o, 2 LEDs			
24VAC/DC		1SVR 550228 R 9100	
220-240VAC/DC		1SVR 550221 R 9100	
\square CT-IRE, switching relay, A1/A2 on top, 1c/o, 2 LEDs			
24VAC/DC		1SVR 550238 R 9100	
220-240VAC/DC		1SVR 550231 R 9100	
Solid-state output			
CT-MKE, multifunction timer, 4 functions ${ }^{11}$, solid-state, functions and time range selection via external jumpers			
24-240VAC/DC	0.1-10s, 3-300s	1SVR 550019 R 0000	
® CT-EKE, ON-delay timer, solid-state output, 1 LED			
24-240VAC/DC	0.1-10s	1SVR 550509 R 1000	
	0.3-30s	1SVR 550509 R 4000	
	3-300s	1SVR 550509 R 2000	
- CT-AKE, OFF-delay timer, solid-state output, 1 LED			
24-240VAC/DC	0.1-10s	1SVR 550519 R 1000	
	0,3-30s	1SVR 550519 R 4000	
	3-300s	1SVR 550519 R 2000	

1) Functions: ON-delay $A C / D C$, impulse-ON (AC only), flasher starting with ON (AC only), flasher starting with OFF (AC only)

CT-MKE is a solid-state timer for 2-wire applications with thyristor output.
It is connected in series with the control contactors or relays. The voltage should not be connected without a load, because there is no current limiting in the unit.
Functions and time ranges are programmed simply by plugging in external wire jumpers.
Times can be set exactly by a knurled thumb wheel with relative time scale.
Function "ON-delay"
Without external wire jumpers connected. If voltage is applied by an external control contact, the timer will start. After the set delay time the thyristor will energize the contactor.
Function "OFF-delay"
With the addition of an auxiliary relay, an "OFFdelay" function may be obtained. See schematic herein marked "OFF-delay".

Function "impulse-ON"
External jumper connection $X_{1}-X_{4}$. If voltage is applied by an external control contact, the thyristor will switch without delay and energizes the

Remark: $1 \mathrm{c} / \mathrm{o}=$ SPDT	Packing unit 1 piece
- Function diagrams .. 12	- Connection diagrams ... 25
- Technical data .. 18	- Dimensional drawings .. 25

Electronic timers CT-D range

Selection and ordering details

CT-MFD

Characteristics CT-D range

- 1 multifunction and 5 single function timers

■ Multi supply voltage range A1-A2 $=24-240 \mathrm{VAC} / 24-48 \mathrm{VDC}$

- 1c/o output contact (250V/8A)

■ 7 time ranges $0.05 \mathrm{~s}-100 \mathrm{~h}$

- Parallel load to the control input possible
- (UL) Us - Approval (under preparation)

LISTED

Supply voltage	Order code	Price 1 piece
CT-MFD, multifunction timer, 7 functions ${ }^{\text {1 }}$, 7 time ranges (0.05 s -100h), 1c/o, 2 LEDs		
24-240VAC, 24-48VDC	1SVR 500020 R 0000	
\triangle CT-ERD, ON-delay timer, 7 time ranges (0.05s-100h), $1 \mathrm{c} / \mathrm{o}, 2$ LEDs		
24-240VAC, 24-48VDC	1SVR 500100 R 0000	
CT-AHD, OFF-delay timer, 7 time ranges (0.05s-100h), 1c/o, 2 LEDs		
24-240VAC, 24-48VDC	1SVR 500110 R 0000	
$1 \Omega \boxtimes$ CT-VWD, impulse-on timer , 7 time ranges (0.05s-100h), 1c/o, 2 LEDs		
24-240VAC, 24-48VDC	1SVR 500130 R 0000	
$\Omega \boxtimes$ CT-EBD, flasher, starting with ON, 7 time ranges (0.05s-100h), 1c/o, 2 LEDs		
24-240VAC, 24-48VDC	1SVR 500150 R 0000	
Ω CT-TGD, pulse generator ${ }^{2}$), 7 time ranges (0.05 s -100h), 1c/o, 2 LEDs		
24-240VAC, 24-48VDC	1SVR 500160 R 0000	

1) Functions: ON-delay, OFF-delay with auxiliary voltage, impulse-ON, pulse former with auxiliary voltage, impulse-OFF with auxiliary voltage, flasher starting with ON, flasher starting with OFF.
2) ON - and OFF time adjustable independently from each other $2 \times 0.05 \mathrm{~s}-100 \mathrm{~h}$

Electronic timers C56xx range front panel mounted

Selection and ordering details, accessories

C5600

C5610

C5620

C5600.10

C5600.20

Selection and ordering details

- Electronic timers, front panel mounted $48 \times 48 \mathrm{~mm}$;
- Panel hole $45 \times 45 \mathrm{~mm}$
- 11 pin socket
\(\left.$$
\begin{array}{l|l|l|l|l|l|l}\text { Version } & \text { Time range } t & \begin{array}{c}\text { Supply voltage } \\
\text { AC }(50-60 \mathrm{~Hz}) \mathrm{DC}\end{array} & \text { Order code }\end{array}
$$ \begin{array}{c}Packing

unit

piece\end{array}\right\}\)| Price |
| :---: |
| 1 piece | | Weight |
| :---: |
| 1 piece |
| $\mathrm{kg} / \mathrm{oz}$ |

Timer C5600, ON-delay, 6 analog time ranges

with LED	$0.1 \mathrm{~s}-10 \mathrm{~h}$	110 V	24V	1SAR 310128 R0011	1	0.110/4.0
2c/o		220-240V	24 V	1SAR 310128 R0012		
delayed						
or 1c/o		$50 / 60 \mathrm{~Hz}$				
delayed and one as an instantaneous contact						

Timer C5610, multifunction, 6 analog time ranges

with LED 1c/o ON-delay, OFF-delay with auxiliary voltage, pulse former, impulse-ON	0.1 s-10 h	$\begin{aligned} & 110 \mathrm{~V} \\ & 220-240 \mathrm{~V} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 24 \mathrm{~V} \\ & 24 \mathrm{~V} \end{aligned}$	1SAR 330128 R0011 1SAR 330128 R0012	1	0.110/4.0

Timer C5620, multifunction, digital adjustable, 11 time ranges

Accessories

Type	Function	Order code	Packing unit piece	Price 1 piece	Weight 1 piece $\mathrm{kg} / \mathrm{oz}$
Socket C5600.10	11 pin socket with connection on backside	1SAR 390 000 R5000	6		$0.080 / 2.8$

Socket C5600.20	11 pin socket with DIN-rail mounting	1SAR 390000 R6000	6	0.080/2.8

Remark: $1 \mathrm{c} / \mathrm{o}=$ SPDT; $2 \mathrm{c} / \mathrm{o}=$ DPDT

Electronic timers CT-S range

Function diagrams

$\mathrm{t}=$ set delay time $/ \mathrm{ts}=$ storing time;
$t=t 1+t^{2}$

$t=$ set delay time
= OFF-delay, without aux. voltage CT-ARS

$t=$ set delay time

ta = timer delay on "ON"/ tr = timer delay on "OFF" CT-EAS - ta $=$ tr
CT-EVS - ta and $t r$ independently adjustable

ON-delay / Delay on make
Timer is started when the supply voltage is applied, control contact $\mathrm{Y} 1 / \mathbf{Z 2}$ is being open. The green LED flashes while timing. The output relay is energized and the flashing light turns steady after the set delay time has elapsed. If the supply is disconnected, the output relay resets and the elapsed time is reset. Timing can also be started by opening control contact $\mathbf{Y} 1 / \mathbf{Z 2}$ with the supply voltage applied. If the control contact $\mathbf{Y} 1 / \mathbf{Z 2}$ closes after the supply voltage has been applied, all the internal functions are reset. By closing the control contact $\mathbf{X 1 / Z 2}$ the timer can be stopped. The elapsed time is stored.

Timing continues by opening the contact. This can be repeated as often as required
By setting the slide switch to position Inst., the 2nd c/o contact operates instanteously when the supply voltage is applied. Both c/o contacts reset if the supply is disconnected By connecting a remote potentiometer at the Z1/Z2 terminals the time can be set externally. When connecting an external potentiometer the internal potentiometer is automatically switched off.

OFF-delay / Delay on break volt free (dry contact) control input

This function needs a permanent supply at the A1/A2 terminals for timing. Timing is controlled by a potential-free contact at the Y1/Z2 terminals. If the contact is closed, the output relay is energized. If the contact is opened, the set time starts to elapse (control pulse length 20 ms min.). The green LED flashes while timing. The LED turns steady and the output relay is opened if the timer has elapsed. By closing the control contact $\mathbf{X 1} / \mathbf{Z 2}$ the timer can be stopped.

The elapsed time is stored. Timing continues by opening the contact This can be repeated as often as required
By connecting a remote potentiometer at the Z1/Z2 terminals, the time can be set externally. When connecting an external potentio meter the internal potentiometer is automatically switched off. Both c/o contacts reset if the supply is disconnected.

OFF-delay / Delay on break volt controlled input contact

The OFF-delay time relay CT-APS needs a permanent supply at the terminals A1/A2, B2/A2 or B1/A2. Timing is controlled by supply voltage related control contact at the Y1 terminal
If the control contact is closed the output relay energizes.
If the control contact is opened, the set time starts to elapse (control pulse length 20 ms min.). The green LED flashes while timing.

The LED turns steady and the output relay is de-energized if the timer has elapsed. By setting the slide switch to position Inst. the 2nd c/o contact operates as an instantaneous contact. If supply is disconnected while timing both outputs are de-energized.

OFF-delay, without auxiliary voltage / True OFF-delay
CT-ARS is an OFF-delay timer which does not require supply power at the A1/A2 terminals while timing.
After a storage time of several months, a charging time of about 5 minutes is necessary. For this, voltage must be applied to the unit. When applying the voltage the output relay is energized and after disconnecting the supply, the preset time starts to elapse. By connecting a remote potentiometer at the Z1/Z2 terminals, the time can be set externally.

When connecting a remote potentiometer the factory-mounted jumper on the $\mathbf{Z 1} / \mathbf{Z 2}$ terminals must be removed and the internal potentiometer must be set on the smallest possible value. For correct functioning of the unit, it is necessary to observe the minimum energizing time.
As soon as the timer starts to elapse, both LEDs will turn off.

ON and OFF-delay, symmetrical times (CT-EAS), asymmetrical times (CT-EVS)
The time relay needs a continuous supply voltage at the B1 and A2, B2 and A2 or A1 and A2 respectively.
The ON-delay function starts by closing the control contact Y1-Z2.
After the timer has elapsed and is opened the control contact Y1-Z2, the OFF-delay is started.
green LED flashes during timing of both functions.
If the slide switch is set to the Inst. position, the $2 \mathrm{nd} \mathrm{c} / \mathrm{o}$ contact is energized immediately, and the 1st c/o contact, after the delay time has elapsed.
Both c/o contacts reset if the supply is disconnected.

Impulse-ON / Interval
The output relay is energized without delay when the supply voltage is applied to the A1 and A2 terminals and is de-energized after the set time has elapsed.
The green LED flashes while timing. The flashing LED turns steady as soon as the set time has elapsed. Timing can also be started by opening control contact $\mathbf{Y} 1 / \mathbf{Z 2}$ with the supply voltage applied. By closing the control contact $\mathbf{X} 1 / \mathbf{Z 2}$, the timer can be stopped. The elapsed time is stored.

Timing continues by opening the contact. This can be repeated as often as required.
By setting the slide switch to position Inst., the 2nd c/o contact is. The 2nd c/o contact resets if the supply is disconnected.
By connecting a remote potentiometer at the $\mathbf{Z 1} / \mathbf{Z 2}$ terminals, the time can be set externally. When connecting an external potentiometer the internal potentiometer is automatically switched off. Both c/o contacts reset if the supply is disconnected.

Impulse-OFF / Trailing edge interval

The supply voltage must be applied continuously
By opening control contact $\mathrm{Y} 1 / \mathbf{Z 2}$, the output relay is energized immediately and timing starts.
The green LED flashes while timing. The flashing LED turns steady and the output relay resets after the set time has elapsed.
Timing can be stopped by closing control contact $\mathbf{X} 1 / \mathbf{Z 2}$.
The elapsed time is stored. Timing continues by opening the contact

This function can be repeated as often as required
If the slide switch is set to Inst. position, the 2nd c/o contact is energized immediately as supply voltage is connected. If de-energized when supply voltage is disconnected. By connecting a remote potentiometer at the $\mathbf{Z 1} / \mathbf{Z 2}$ terminals the time can be set externally. When connecting an external potentiometer the built-in one is automatically switched off. Both c/o contacts reset if the supply is disconnected.

Electronic timers CT-S range

Function diagrams

$t=$ set flashing time

tp=OFF time / ti = ON time
ts = Storage time $/ \mathrm{tp} / \mathrm{ti}=\mathrm{t} 1+\mathrm{t} 2$
$\Delta 1 \Omega=$ Star-delta changeover with wiper function CT-YDEW, CT-MFS, CT-MBS

Flasher, starting with "ON" / Recycling equal times-ON first
After connecting the supply power to the A1 and A2, the timer will start to pulse in a symmetrical ON/ OFF cycle. This cycle will be displayed by the flashing green LED, which flashes twice as fast in the OFF cycle. When closing the control contact Y1/Z2 at applied supply voltage, the output relay will open.

Opening the control contact again, restarts the pulse again in the preset cycle.
If the slide switch is set to the Inst. position, the 2nd c/o contact is energized immediately when supply voltage is applied. Both c/o contacts reset if supply voltage is disconnected.

Flasher, starting with "OFF" / Recycling equal times-OFF first

After applying the supply power to the A1 and A2 terminals, the timer will start to pulse in a symmetrical OFF/ON cycle. This cycle will be displayed by the flashing green LED which flashes twice as fast in the OFF cycle.
When closing the control contact $\mathrm{Y} 1 / \mathrm{Z} 2$ at applied supply voltage, the output relay will be de-energized. By opening the control contact again, the relay will start to flash in the preset cycle.
If the slide switch is set to the Inst. position, the 2nd c/o contact will be energized immediately as an instantaneous contact after

Pulse generator / Recycling unequal times
ON and OFF times ranging from $0.05 \mathrm{~s} \ldots 300 \mathrm{~h}$ can be set independently of each other.
Time ranges are set using two turn-switches. The desired time values are set using built-in potentiometers with direct reading scales. Time ranges can also be set by remote potentiometers. The built-in potentiometers are switched off automatically when remote potentiometers are connected.
The function can be changed from "OFF" cycle to "ON" cycle using X2/Z2 terminals as an external link. The relationship of the interna and external potentiometers remain unchanged.

By closing the control contact X1/Z2, the timer for ON/OFF cycle can be stopped.
The actual time value is stored. By opening the contact again, the timer continues timing from this point.
This function can be repeated as often as required.
After applying the supply to the B2/A2 or respectively to the A1/A2 terminals, the CT-TGS starts - as selected - to work with an "ON" or an "OFF" cycle. The "ON"/ "OFF" cycle is displayed with the flashing green LED.

Single pulse generator (impulse) / Delay on make interval
When applying the supply voltage at the terminals B1/A2, B2/A2, A1/A2, the output relay will be energized after the preset delay on operate time and will then be de-energized after the delay on release time has elapsed.
Timing can be stopped by closing the control contact $\mathbf{X 1 / Z 2}$.
When opening the contact again, the timer will continue at the stored time value.

Star-delta changeover with impulse
CT-YDEW is designed especially for starting-up squirrel cage motors by a star-delta starter.
It uses two separate timing circuits: a variable timing circuit for the start-up time in star-mode, and a fixed timing circuit with 50 ms for the transit time from star contactor to delta contactor.
If the supply is applied to the A1/A2 terminals,
the first output relay will close.

Star-delta changeover twice ON-delayed
CT-YDAV is designed especially for starting-up squirrel cage motors by a star-delta starter.
It uses two separate timing circuits: a variable timing circuit for the start-up time star-mode and a fixed timing circuit with 50 ms for the transit time from star contactor to delta contactor.

Timing can also be started by opening the control contact $\mathbf{Y} 1 / \mathbf{Z 2}$ and applied supply.
If the control contact $\mathbf{Y} \mathbf{1} / \mathbf{Z 2}$ is closed after applying the supply voltage, the internal function is reset. With the PGS, a single pulse can be produced with a delay.

After the first output relay has opened, the second timer with 50 ms will start to elapse.
After this timer has elapsed, the second output relay will close and stay closed until the supply is disconnected.
Timing is displayed by the flashing green LED.

If the supply is applied to the A1/A2 terminals,
the first output relay will close after the preset time
The second output relay will close after another 50 ms and
stay closed until the supply is disconnected.
Timing is displayed by the flashing green LED.

Electronic timers CT-E range

Function diagrams

ON-delay / Delay on make
Timing starts when the supply voltage is applied at the A1 and A2 terminals. After the set time has elapsed, the output relay is energized.
If the supply voltage is disconnected, the output relay resets and the elapsed time is cancelled.

OFF-delay, with auxiliary voltage / Delay on break
Continuous presence of a supply voltage at the
A1/B1-A2 terminals is required while timing.
Timing is controlled by a control input Y1 (supply power potential). If this input contact is closed, the output relay is energized.
By opening the control contact, the timer is started, and the set time begins to elapse.

OFF-delay, without auxiliary voltage / True OFF-delay
The OFF-delay function does not need an auxiliary voltage; it is controlled by the supply voltage.
After applying the supply at the A1-A2 terminals the output relay is energized. If the supply is disconnected, the set time value starts to elapse.

Impulse-ON / Interval

When applying the supply voltage at the $\mathbf{A 1}$ and A2 terminals, the output relay is energized without delay and is de-energized after the set pulse time

Pulse former / Single shot

If the control contact Y1 is closed when supply voltage is applied, the output relay is energized for the set pulse time. If the control contact Y1 is then opened, the output relay remains energized for the set pulse time.
has elapsed.

If the supply is disconnected before the set time has elapsed, the output relay is not energized.

After the delay time has elapsed,the output relay is de-energized. If the control contact is closed once more while the timer is energized, the time delay is reset. If the control contact is opened again, the timer restarts.

After the set time has elapsed, the output relay is de-energized.
If the supply is connected again before the set time has elapsed, the time is reset and the output relay stays energized until the time has elapsed anew.

If the supply voltage is disconnected before the set pulse time has elapsed, the output relay is deenergized without delay.

When the power supply is disconnected, the output relay is de-energized without delay.
After the pulse has elapsed, the next pulse defined by the set time, can be activated by closing the control contact Y 1.

Impulse-off, with auxiliary voltage / Trailing edge interval
The single pulse on release function requires a continuous presence of a supply voltage at the A1/B1-A2 terminals. If the control contact Y1 (supply power potential) is opened, the output relay is energized without delay and the timer is started.

The output relay stays energized for the set pulse time and is de-energized after this time has elapsed.
By disconnecting the supply or by closing the controller contact the time delay is reset and the output relay is de-energized.

[^0]
Electronic timers CT-E range

Function diagrams

Impulse-OFF, without auxiliary voltage / True trailing edge interval
The impulse-off function does not need an auxiliary supply at the A1 and A2 terminals for timing. This is controlled by the supply voltage.
By disconnecting the supply voltage, the output relay is energized and the set impulse time starts to elapse.

After the impulse time has elapsed, the output relay is de-energized.
If the supply power is applied again while the timer is active, the output relay is de- energized at once and the time delay is reset.

Flasher, starting with "ON" / Recycling equal times-ON first
When the supply power is applied at the $\mathbf{A 1 / B 1} \mathbf{- A 2}$ If the supply power is disconnected, the output terminals, the output relay starts to cycle in relay will be de-energized.
symmetrical ON/ OFF intervals.
The time delay can be modified by a potentiometer at the front of the timer.

Flasher, starting with "OFF" / Recycling equal times-OFF first

When applying the supply power at the A1/B1-A2 terminals, the output relay starts to cycle in symmetrical OFF/ON intervals.
The cycle starts with an OFF cycle.

Star-delta change-over (CT-YDE)

The CT-YDE is designed for starting-up squirrel cage motors with a star-delta starter. It uses two separate timing circuits: an adjustable timing circuit, settable at the front of the timer, for the start-up time of the star contactor and a fixed timing circuit of 50 ms for star-delta change-over.

The OFF/ON cycle can be adjusted by a potentiometer at the front of the timer.
If the supply is disconnected, the output relay will be de-energized.

After the delay time has elapsed, the relay interrupts the voltage to the star contactor, and, after another 50 ms , activates the delta contactor.
Application examples see page 23.

Star-delta change-over

The CT-SDE is designed especially for starting-up squirrel cage motors with a star-delta starter. It uses two separate timing circuits: an adjustable timing circuit, settable at the front of the timer, for the start-up time of the star contactor and a fixed timing circuit of 30 ms for star-delta change-over. If the supply is applied to the A1-A2 terminals, and
after the set time has elapsed, the contact 15-16 will open.
After another 30 ms the contact $15-18$ closes.
The internal wiring combination of two relays greatly reduces the amount of external wiring required.
Application examples see page 23.

Switching relay / Interface relay

The switching relay may be used to increase the number of available contacts or as a coupling/ decoupling interface.
If the supply is applied to the A1-A2 terminals, the output relay will be energized immediately.

If the supply is interrupted, the output relay will be de-energized.

[^1]
Electronic timers CT-D range

Function diagrams

ON-delay / Delay on make
Timing starts when the supply voltage is applied at the A1 and A2 terminals. After the set time has elapsed, the output relay is energized. If the supply voltage is disconnected, the output relay resets and

OFF-delay, with auxiliary voltage / Delay on break Continuous presence of a supply voltage at the A1-A2 terminals is required while timing. Timing is controlled by an input contact Y1 (supply power potential). If this input contact is closed, the output relay is energized.
By opening the control contact, the timer is started, and the set time begins to elapse.

mpulse-ON / Interval

When applying the supply power at the A1 and A2 terminals, the output relay is energized without delay and is de-energized after the set pulse time has elapsed.

Pulse former / Single shot

If the control contact Y 1 is closed when supply voltage is applied, the output relay is energized for the set pulse time. If the control contact Y 1 is then opened, the output relay remains energized for the set pulse time.
the elapsed time is cancelled. If the supply is disconnected before the set time has elapsed, the output relay is not energized.

After the delay time has elapsed, the output relay is de-energized. If the control contact is closed once more during timing, the time delay is reset. If the control contact is opened again, the timer restarts.

If the supply voltage is disconnected before the set pulse time has elapsed, the output relay is deenergized without delay.

When the power supply is disconnected, the output relay is de-energized without delay. After the pulse has elapsed, the next pulse defined by a set time, can be activated by closing the control contact Y 1 .

Impulse-OFF, with auxiliary voltage / Trailing edge interval

The impulse-OFF function requires a continuous presence of a supply voltage at the
A1/B1-A2 terminals. If the control contact Y1 (supply power potential) is opened, the output relay is energized without delay and the timer is started. The output relay stays energized for the set pulse

Flasher, starting with "ON" / Recyling equal times - ON first
When the supply voltage is applied at the A1-A2
terminals, the output relay starts to cycle in symmetrical ON/OFF intervals.
The time delay can be adjusted by a potentiometer
at the front of the timer.
If the supply power is disconnected, the output relay will be de-energized.
time and is de-energized after this time has elapsed.
By disconnecting the supply or by closing the control contact, the timer is reset and the output relay is de-energized.

Flasher, starting with "OFF" / Recyling equal times - OFF first

When applying the supply voltage at the A1-A2 terminals, the output relay starts to cycle in symmetrical OFF/ON intervals.
The cycle starts with an OFF cycle.

Pulse generator starting with "ON" or starting with "OFF" / Recycling unequal times

When applying the supply voltage at the A1 and A2 The ON-time and the OFF-time can be adjusted terminals, the timer relay starts either with an"ON" independenty.
or an "OFF" cycle. Starting with ON or OFF is selectable.

The OFF/ON cycle can be adjusted by a potentiometer at the front of the timer. If the supply is disconnected, the output relay will be de-energized.

Electronic timers C56xx range

Function diagrams

ON- delay / Delay on make
Timing starts when the supply voltage is applied at the 2-10 terminals. After the set time has elapsed, the output relay is energized. If the supply voltage is disconnected, the output relay resets and the elapsed time is cancelled.

OFF-delay, with auxiliary voltage / Delay on break Continuous presence of a supply voltage at the 2-10 terminals is required while timing. Timing is controlled by an input contact 2-5 (supply power potential). If this input contact is closed, the output relay is energized.
By opening the control contact, the timer is started, and the set time begins to elapse.

Impulse-ON / Interval
When applying the supply voltage at the 2-10 terminals, the output relay is energized without delay and is de-energized after the set pulse time has elapsed.

Pulse former / Single shot

If the control contact $\mathbf{2 - 1 0}$ is closed when supply voltage is applied, the output relay is energized for the set pulse time. If the control contact 2-5 is then opened, the output relay remains energized for the set pulse time.

If the supply is disconnected before the set time has elapsed, the output relay is not energized.

After the delay time has elapsed, the output relay is de-energized. If the control contact is closed once more while the timer is energized, the time delay is reset. If the control contact is opened again, the timer restarts.

If the supply voltage is disconnected before the set pulse time has elapsed, the output relay is deenergized without delay.

When the power supply is disconnected, the output relay is de-energized without delay.
After the pulse has elapsed, the next pulse defined by the set time can be activated by closing the control contact 2-5.

Flasher, starting with "ON" / Recyling equal times-ON first
When the supply power is applied at the 2-10 The time delay can be adjusted by a potentiometer terminals, the output relay starts to switch in at the front of the timer. symmetrical ON/ OFF intervals.

If the supply power is disconnected, the output relay will be de-energized.

Flasher, starting with "OFF" Recyling equal times-OFF first

When applying the supply power at the 2-10 terminals, the output relay starts to flash in symmetrical OFF/ON intervals. The cycle starts with an OFF.

The OFF/ON cycle can be adjusted by a potentiometer at the front of the timer. If the supply is disconnected, the output relay will be de-energized.

Electronic timers CT-S range

Technical data

Remark: $1 \mathrm{c} / \mathrm{o}=\mathrm{SPDT} ; 2 \mathrm{c} / \mathrm{o}=$ DPDT

Electronic timers CT-S range

Technical data, standards, load limit curves CT-S range

General data	
Width of the enclosure	22.5 mm
Wire size	$2 \times 2.5 \mathrm{~mm}^{2}(2 \times 14 \mathrm{AWG})$ stranded with wire end ferrule
Weight	approx. $150 \mathrm{~g} / 5.3 \mathrm{oz}$
Mounting position	any
Degree of protection enclosure / terminals	IP50/IP20
Operating temperature	$-20^{\circ} \mathrm{C} . . .+60^{\circ} \mathrm{C}$
Storage temperature	$-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Mounting	DIN rail (EN50022)
Mechanical shock resistance acc. to IEC68-2-6	6G
Standards / directives	
Product standard	parts of IEC 255, IEC 1812-1
Electromagnetic compatibility	93/68/EWG
EMC-tests acc. to EN50082-2	
ESD acc. to IEC1000-4-2, EN61000-4-2	level 3-6kV/8kV
HF radiation resistance acc. to IEC1000-4-3, EN61000-4-3	level 3-10V/m
Burst acc. to IEC1000-4-4, EN61000-4-4	level $3-2 \mathrm{kV} / 5 \mathrm{kHz}$
Surge acc. to IEC1000-4-5, EN61000-4-5	level 4-2kV L-L
HF line emission acc. to IEC1000-4-6, EN61000-4-6	level 3-10V
Low voltage directive	93/68/EWG
Resistance to vibration	$10 \mathrm{G}, \mathrm{f}=55 \mathrm{~Hz}, \mathrm{a}=0.95 \mathrm{~mm}, \mathrm{t}=2 \mathrm{~h}$ per level
Approvals	cULus, GL, GOST
Isolation data	
Rated Isolation voltage to VDE0110, IEC947-1 between supply-, control- and output circuit	Supply 240V-300V Supply 440V-500V
Rated impulse withstand voltage to VDE0110, IEC664 -between all isolated circuits	$4 \mathrm{kV} / 1.2-50 \mu \mathrm{~s}$
Test voltage between all isolated circuits	$2.5 \mathrm{kV}, 50 \mathrm{~Hz}, 1 \mathrm{~min} .{ }^{4)}$
Pollution category acc. to VDE0110, IEC664/IEC255-5	III/C
Overvoltage category acc. to VDE0110, IEC664/IEC255-5	III/C
Environmental tests acc. to IEC68-2-30	24 h cycle, $55^{\circ} \mathrm{C}, 93 \%$ rel., 96h

${ }^{1)}$ CT-MBS 1c/o, CT-MBS 2c/o, CT-ERS 1c/o, CT-EVS, CT-APS, CT-EBS 1c/o
${ }^{2)}$ see connection example page 23,24
${ }^{3}$) no galvanic isolation to supply circuit
4) $2 \mathrm{kV}, 50 \mathrm{~Hz}, 1 \mathrm{~min}$. for CT-ARS
5) CT-ARS: 24VAC/DC - approx. 1A for 30ms 18VAC/DC - approx. 1A for 20 ms 110-130VAC - approx. 1A for 15 ms 220-240VAC - approx. 1A for 10 ms

Load limit curves

AC load (resistive)

DC load (resistive)

Reduction factor for inductive AC load

Reduction factor F
Reduction factor
for inductive load

Contact life

Contact life/number of operations N
220 V 50 Hz 1 AC
360 operations/h

Electronic timers CT-E range

Technical data

Terminals used		CT-E range
Input circuits		
Supply voltage - power consumption	A1-A2	24-240VAC/DC - approx. 1.0-2.0VA/W
	A1-A2	110-130VAC - approx. 2.0VA
	A1-A2	220-240VAC - approx. 2.0VA
	B1-A2	24VAC/DC - approx. 1.0VA/W
Tolerance of the supply voltage		-15\%...+10\%
Supply voltage frequency AC	AC/DC version AC version	$\begin{gathered} \hline \text { DC }(0 \mathrm{~Hz}), 50 / 60 \mathrm{~Hz} \\ 50 / 60 \mathrm{~Hz} \\ \hline \end{gathered}$
Control contact connections, non-volt free ${ }^{1)}$	Y1	external timer start-up
Control contact potential		Supply voltage
Minimum controller pulse length		20 ms
Duty time		100\%
Minimum energizing time (CT-ARE)		200 ms
Solid-state devices CT-MKE, CT-EKE, CT-AKE		
Voltage drop in closed state		$\leq 3 \mathrm{~V}$
Power consumption while timing		$\begin{aligned} & \leq 2 \mathrm{~mA}(24-60 \mathrm{VAC} / \mathrm{DC}) \\ & \leq 8 \mathrm{~mA}(60-240 \mathrm{VAC} / \mathrm{DC}) \end{aligned}$
Cable length CT-MKE, CT-EKE, CT-AKE		
Between solid-state timer and connected load at 50 Hz and a cable capacity of $100 \mathrm{pF} / \mathrm{m}$:		at $24 \mathrm{VAC}-220 \mathrm{~m} / 22 \mathrm{nF}$ at 42 VAC $-100 \mathrm{~m} / 10 \mathrm{nF}$ at $60 \mathrm{VAC}-65 \mathrm{~m} / 6.5 \mathrm{nF}$ at 110 VAC- $50 \mathrm{~m} / 5 \mathrm{nF}$ at $240 \mathrm{VAC}-22 \mathrm{~m} / 2.2 \mathrm{nF}$
Timing circuit		
Time ranges		
Single function timers		$\begin{gathered} 1 \text { time range per unit } \\ 0.05-1 \mathrm{~s}, 0.1-10 \mathrm{~s}, 0.3-30 \mathrm{~s}, 3-300 \mathrm{~s}, 0.3-30 \mathrm{~min} \end{gathered}$
Multifunction timers	CT-MFE CT-MKE	8 time ranges $0.05 \mathrm{~s}-100 \mathrm{~h}$ 2 time ranges $0.1-10 \mathrm{~s}$ and $3-300 \mathrm{~s}$
Stardelta changeover time		CT-YDE-50ms, CT-SDE-30ms
Recovery time		$<50 \mathrm{~ms}$ ($<100 \mathrm{~ms}$ CT-MKE, $<300 \mathrm{~ms}$ CT-AKE, $<200 \mathrm{~ms}$ CT-ARE, <400ms CT-AWE, CT-SDE, <500ms CT-YDE)
Repeat accuracy (constant parameters)		<1\%
Timing error within the tolerance of the supply voltage		<0.5\% / \% $\Delta \mathrm{U}$
Timing error within temperature range		<0.1\% (<0.06\% / ${ }^{\circ} \mathrm{C}$ CT-MFE)
Display of operational states		
Supply voltage		green LED
Output relay energized		red LED
Output circuit, relay devices		15-16/18
No. of contacts		Relay, 1c/0
Contact material		AgCdo
Rated voltage acc. to VDE0110, IEC947-1		250 V
Switching voltage max.		250VAC, 250VDC
Rated switching current acc. to IEC941-x AC12 (resistive)	230 V	4A
Rated switching current acc. to IEC941-x AC15 (inductive)	230 V	3A
Rated switching current acc. to IEC941-x DC12 (resistive)	24 V	4A
Rated switching current acc. to IEC941-x DC13 (inductive)	24 V	2 A
Maximum mechanical life		30×10^{6}
Maximum electrical life (acc. to AC12, 230V, 4A)		0.1×10^{6}
Short circuit proof, max. fuse rating	n/c	10A fast, operating class gL (5A CT-ARE)
	n/0	10A fast, operating class gL (5A CT-ARE)

Remark: $1 \mathrm{c} / \mathrm{o}=$ SPDT

Electronic timers CT-E range

Technical data, standards, load limit curves

	CT-E range
Output circuits solid-state devices CT-MKE, CT-EKE, CT-AKE	A1-A2, A1-AL
	Thyristor (CT-MKE, CT-EKE, CT-AKE)
Rated voltage acc. to VDE0110, IEC947-1	250 V
Switching voltage max.	240 V
Load current min.	20 mA (10mA CT-EKE, CT-AKE)
Load current max.	0.8 A at TA $=20^{\circ} \mathrm{C}$ (0.7A CT-EKE, CT-AKE)
Load current reduced / derating	$10 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$
Surge current max.	$\leq 20 \mathrm{~A}$ for $\mathrm{t} \leq 20 \mathrm{~ms}(\leq 15 \mathrm{~A} \mathrm{CT}-$ EKE, CT-AKE)
General data	
Width of the enclosure	22.5 mm
Wire size	$2 \times 1.5 \mathrm{~mm}^{2}(2 \times 16 \mathrm{AWG})$ stranded with wire end ferrule
Weight	approx. $80 \mathrm{~g} / \mathrm{approx} .2 .8 \mathrm{oz}$
Mounting position	any
Degree of protection enclosure / terminals	IP50/IP20
Operating temperature	$-20^{\circ} \mathrm{C} . . .+60^{\circ} \mathrm{C}$
Storage temperature	$-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Mounting of	DIN rail (EN50022)
Mechanical shock resistance acc. to IEC68-2-6	10G
Standards / directives	
Product standard	parts of IEC255, IEC 1812-1
Electromagnetic compatibility	93/68/EWG
EMC-tests acc. to EN50082-2	
ESD acc. to IEC1000-4-2, EN61000-4-2	level 3-6kV/8 kV
HF radiation resistance acc. to IEC1000-4-3, EN61000-4-3	level 3-10V/m
Burst acc. to IEC1000-4-4, EN61000-4-4	level $3-2 \mathrm{kV} / 5 \mathrm{kHz}$
Surge acc. to IEC1000-4-5, EN61000-4-5	level 4-2kV L-L
HF line emission acc. to IEC1000-4-6, EN61000-4-6	level 3-10V
Low voltage directive	93/68/EWG
Resistance to vibration	$10 \mathrm{G}, \mathrm{f}=55 \mathrm{~Hz}, \mathrm{a}=0.95 \mathrm{~mm}, \mathrm{t}=2 \mathrm{~h}$ per level
Approvals	cULus, GL, GOST
Isolation data	
Rated isolation voltage to VDE0110, IEC947-1 between supply-, control- and output circuits	supply up to $240 \mathrm{~V}-300 \mathrm{~V}$ supply up to 440V-500V
Rated impulse withstand voltage to VDE0110, IEC664 -between all isolated circuits	$4 \mathrm{kV} / 1.2-50 \mu \mathrm{~s}$
Test voltage between all isolated circuits	$2.5 \mathrm{kV}, 50 \mathrm{~Hz}, 1 \mathrm{~min}$.
Pollution category acc. to VDE0110, IEC664/IEC255-5	III/C
Overvoltage category acc. to VDE0110, IEC664/IEC255-5	III/C
Environmental tests acc. to IEC68-2-30	24 h cycle, $55^{\circ} \mathrm{C}, 93 \%$ rel., 96h

Electronic timers CT-D range

Technical data

Terminals used		CT-D range
Input circuits		
Supply voltage - power consumption	A1-A2	24-240VAC / 24-48VDC - approx. VA/W
Tolerance of the supply voltage		-15\%...+10\%
Supply voltage frequency	DC supply AC supply	DC / OHz 50/60Hz
Control contact connections, non-volt free ${ }^{\text {1) }}$	Y1-A2	external timer start-up
Minimum control input pulse length		20 ms
Max. cable length to the control inputs		
Duty time		100\%
Timing circuit		
Time ranges		7 time ranges 0.05s-100h
		$\begin{array}{cccc}\text { 1.) } 0.05-1 \mathrm{~s} & 2 .) \\ 0.5-10 \mathrm{~s} \quad 3 .) \\ \text { 6.) } 0.5-100 \mathrm{~s} & 4 .) \\ 0.5-5-10 \mathrm{~min} & 5 .) \\ 5-100 \mathrm{~h}\end{array}$
Recovery time		$<50 \mathrm{~ms}$
Repeat accuracy (constant parameters)		<+/-0.5\%
Timing error within the tolerance of the supply voltage		<0.5\%
Timing error within temperature range		$<0.06 \% /{ }^{\circ} \mathrm{C}$
Display of operating status		
Supply voltage / timer		green LED steady / flashing while timing
Output relay energized		red LED
Output circuits		15-16/18
No. of contacts		relay, 1c/0
Contact material		AgSnO_{2}
Rated voltage acc. to VDE0110, IEC947-1		250 V
Switching voltage min.		12 V
Switching voltage max.		250VAC
Switching current min.		100 mA
Switching current max.		8A
Rated switching current acc. to IEC941-x AC12 (resistive)	230 V	4A
Rated switching current acc. to IEC941-x AC15 (inductive)	230 V	3A
Rated switching current acc. to IEC941-x DC12 (resistive)	24 V	4A
Rated switching current acc. to IEC941-x DC13 (inductive)	24 V	2A
Maximum mechanical life		30×10^{6}
Maximum electrical life (acc. to AC12, 230V, 4A)		0.1×10^{6}
Short circuit proof, max. fuse rating	n/c	6 A fast, operating class gL
	n/o	10A fast, operating class gL
General data		
Width of the enclosure		17.5 mm
Wire size		$2 \times 1.5 \mathrm{~mm}^{2}(2 \times 16 \mathrm{AWG})$ stranded with wire end ferrule $2 \times 2.5 \mathrm{~mm}^{2}(2 \times 14 \mathrm{AWG})$ without wire end ferrule
Weight		approx. $60 \mathrm{~g} /$ approx. $2.10 z$
Mounting position		any
Degree of protection enclosure / terminals		IP50 / IP20
Operating temperature		$-20^{\circ} \mathrm{C} . . .60^{\circ} \mathrm{C}$
Storage temperature		$-40^{\circ} \mathrm{C} . .+85^{\circ} \mathrm{C}$
Mounting		DIN rail (EN50022), snap-on mounting
Mechanical shock resistance acc. to IEC68-2-6		6G

Electronic timers CT-D range

Technical data, standards, load limit curves

	CT-D range
Standards / directives	
Product standard	IEC 61812-1 10.1996, EN 611812-1 + A11/8.1999, DIN VDE 0435 part 2021
Electromagnetic compatibility	93/68/EWG
EMC-tests acc. to EN50082-2	
ESD acc. to IEC1000-4-2, EN61000-4-2	level 3-6kV/8kV
HF radiation resistance acc. to IEC1000-4-3, EN61000-4-3	level 3-10V/m
Burst acc. to IEC1000-4-4, EN61000-4-4	level $3-2 \mathrm{kV} / 5 \mathrm{kHz}$
Surge ac. to IEC1000-4-5, EN61000-4-5	level 4-2kV L-L
HF line emission acc. to IEC1000-4-6, EN61000-4-6	level 3-10V
Low voltage directive	93/68/EWG
Resistance to vibration	$10 \mathrm{G}, \mathrm{f}=55 \mathrm{~Hz}, \mathrm{a}=0.95 \mathrm{~mm}, \mathrm{t}=2 \mathrm{~h}$ per level
Approvals	cULus
Isolation data	
Rated isolation voltage acc. to IEC 50175 / VDE 0160 between supply-, control- and output circuit	300 V
Rated impulse withstand voltage to VDE0110, IEC664 -between all isolated circuits	$4 \mathrm{kV} / 1.2-50 \mu \mathrm{~s}$
Test voltage between all isolated circuits	$2.5 \mathrm{kV}, 50 \mathrm{~Hz}, 1 \mathrm{~min}$.
Pollution category acc. to IEC 50175 / VDE 0160 / UL508	3
Overvoltage category acc. to IEC 50175 / VDE 0160 / UL508	III
Environmental tests acc. to IEC68-2-30	24 h cycle, $55^{\circ} \mathrm{C}, 93 \%$ rel., 96h
${ }^{1)}$ see connection example page 25	

Load limit curves

Electronic timers C56xx range
Technical data

		C5620	C5600 C5610
	Rated isolation voltage Overvoltage category C acc. to DIN VDE 0110	250VAC	250VAC
	Tolerance of supply voltage	+ 10 ...-15\%	$\begin{array}{r} 24 \mathrm{~V}: \\ \hline 15 \ldots+30 \% \\ 115 \mathrm{~V}:-15 \ldots+10 \% \\ \hline \end{array}$
	Power consumption at AC $230 \mathrm{~V} / 50 \mathrm{~Hz}$	$\begin{gathered} \hline 1 \mathrm{~W} \\ \text { 11VA } \end{gathered}$	$\begin{gathered} \hline 1 \mathrm{~W} \\ 11 \mathrm{VA} \end{gathered}$
	Rated switching current I_{e} AC-1 at AC $230 \mathrm{~V} / 50 \mathrm{~Hz}$	8A	8A
	No. of operations at load $\mathrm{l}_{\mathrm{e}}, \mathrm{AC} 230 \mathrm{~V}$ at load with contactor 3RT10 16, AC230V	600/h	600/h
	Recovery time	50 ms	100 ms
	Minimum energizing time	50 ms	100 ms
	Tolerance of adjustment related to fullscale value	$\begin{aligned} & \pm 0.03 \% \\ & \pm 10 \mathrm{~ms} \\ & \hline \end{aligned}$	$\pm 10 \%$
	Repetitive accuracy	$\begin{aligned} & \pm 0.03 \% \\ & \pm 10 \mathrm{~ms} \\ & \hline \end{aligned}$	$\pm 2 \%$
	Mechanical life	5×10^{6}	2×10^{7}
	Environment temperatures $\begin{gathered}\text { operating } \\ \text { storage }\end{gathered}$	$\begin{aligned} & -10^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ & -30^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -20^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$
	Degree of protection acc. to DIN EN 60529	IP65	IP50
	Mounting position	any	any

Electronic timers CT-S range
Wiring diagrams, connection examples star-delta applications

Electronic timers CT-S range

Connection diagrams and position of connection terminals Dimensional drawing

Electronic timers CT－E／CT－D range

Connection diagrams and position of connection terminals Dimensional drawings

Electronic timers CT－E range

Electronic timers CT－D range

CT－MFD				\triangle CT－ERD				－CT－AHD				$1 \Omega \boxtimes<$ CT－VWD				$\Omega \boxtimes$ CT－EBD				$\Omega \boxtimes$ CT－TGD			
A1	15	Y1	5	A1	15		筞	A1	15	Y1	\％	A1	15		堮	A1	15		等	A1	15	Y1	\％
			$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{0}{\circ} \\ & \stackrel{0}{0} \end{aligned}$	${\underset{A}{A 2}}_{\overbrace{1}^{A 1}}^{\overbrace{16}}$			$\begin{aligned} & \circ \stackrel{0}{0} \\ & \stackrel{0}{\circ} \\ & \stackrel{0}{\square} \end{aligned}$				$\begin{aligned} & \text { 밈 } \\ & \stackrel{0}{\circ} \\ & \stackrel{0}{-} \end{aligned}$				$\begin{aligned} & \stackrel{0}{\circ} \\ & \circ \\ & \circ \\ & \stackrel{0}{0} \end{aligned}$	$\overbrace{A_{A 2}}^{A_{1}^{1}}-z-\int_{16}^{15}$			$\begin{aligned} & \text { ㅁ } \\ & \stackrel{0}{\circ} \\ & \text { 은 } \end{aligned}$	$\underbrace{A_{1}}_{A_{2}}$			\％
16	18	A2	\％	16	18	A2	¢	16	18	A2	\％												

Connection examples CT－E range
Single function devices with control contact

Dimensional drawings

CT－E range

CT－D range

Electronic timers C56xx range

Connection diagrams and position of connection terminals Dimensional drawings

C 5620	C 5620	C 5620	C 5620
	OFF-delay with auxiliary voltage (C)		Pulse former with auxiliary voltage (B)
C 5620	C 5620	C 5600	C 5600
Flasher, starting with "OFF" (D)	Flasher, starting with "ON" (Di)		ON-delay and instantaneous contact (1)
C 5610	C 5610	C 5610	C 5610
	$\begin{array}{lll} \mathrm{AC} / \mathrm{DC} 24 \mathrm{~V} & 10 & 11 \\ \text { AC 10V } & 0 & 0 \\ \mathrm{AC} 240 \mathrm{~V} & 10 & 11 \end{array}$	$\left.\begin{array}{llll}A C / D C & 24 \mathrm{~V} & 10 & 11 \\ A C & 110 \mathrm{~V} & 10 & 11\end{array}\right)$	$\begin{array}{llll} \text { AC/DC } 24 \mathrm{~V} & 10 & 11 \\ \text { AC } 110 \mathrm{~V} & 10 & 1 . \\ \text { AC } 240 \mathrm{~V} & 10 & 10 \end{array}$
ON-delay (A)	OFF-delay with auxiliary voltage (C)	Impulse-on (H)	Pulse former with auxiliary voltage (B)

Dimensional drawings

C5620

Accessories
Socket for C56xx

Socket with backward connection forr C56xx

Electronic timers CT-S range

Accessories

Remote potentiometer
$50 \mathrm{k} \Omega \pm 20 \%-0.2 \Omega$ with direct reading scale (graduated dial supplied)

Diameter mm	Degree of protection	Order code	Pack. unit piece	Price 1 piece	Weight 1 piece kg/oz
30.5	IP65	1SVR 700 800 R 1000	1		$0.040 / 1.4$
22.5	IP65	1SVR 701 800 R 1000	1		$0.040 / 1.4$
10.5	IP40	1SVR 214 017 R 0900	1		$0.040 / 1.4$

Adapter for panel mounting

Enclosure width in mm	Order code	Pack. unit piece	Price 1 piece	Weight piece kg/oz
22.5	1SVR 430 029 R 0100	1		$0.020 / 0.7$

Sealable cover

Enclosure width in mm	Order code	Pack. unit piece	Price 1 piece	Weight piece kg/oz
22.5	1SVR 430 005 R 0100	1		$0.020 / 0.7$

Marker

Order code	Pack. unit piece	Price 1 piece	Weight piece kg/oz	
	1SVR 366 017 R 0100	1		$0.020 / 0.7$

Electronic timers

Conversion table C56xx \rightarrow CT-S/CT-E ranges

Conversion table C56xx range (discontinued) to new CT-S and CT-E range

[^2]
[^0]: Remark: $1 \mathrm{c} / \mathrm{o}=\mathrm{SPDT}$; $2 \mathrm{c} / \mathrm{o}=\mathrm{DPDT}$

[^1]: Remark: $1 \mathrm{c} / \mathrm{o}=$ SPDT; $2 \mathrm{c} / 0=$ DPDT

[^2]: Remark: $1 \mathrm{c} / \mathrm{o}=$ SPDT; $2 \mathrm{c} / \mathrm{o}=$ DPDT

